InverseWishartDistribution
final class InverseWishartDistribution<Arg1, Arg2>(Ψ:Arg1, k:Arg2) < Distribution<Real[_,_]>
Inverse Wishart distribution.
This is typically used to establish a conjugate prior for a Bayesian multivariate linear regression:
\begin{align*}
\boldsymbol{\Sigma} &\sim \mathcal{W}^{-1}(\boldsymbol{\Psi}, \nu) \\
\mathbf{W} &\sim \mathcal{MN}(\mathbf{M}, \mathbf{A}, \boldsymbol{\Sigma}) \\
\mathbf{Y} &\sim \mathcal{N}(\mathbf{X}\mathbf{W}, \boldsymbol{\Sigma}),
\end{align*}
where \mathbf{X} are inputs and \mathbf{Y} are outputs.
The relationship is established in code as follows:
V:Random<Real[_,_]>;
Ψ:Real[_,_];
k:Real;
W:Random<Real[_,_]>;
M:Real[_,_];
U:Real[_,_];
Y:Random<Real[_,_]>;
X:Real[_,_];
V ~ InverseWishart(Ψ, k);
W ~ Gaussian(M, U, V);
Y ~ Gaussian(X*W, V);
Member Variables
Name | Description |
---|---|
Ψ:Arg1 | Scale. |
k:Arg2 | Degrees of freedom. |